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LElTER TO THE EDITOR 

Critical dynamics at the percolation threshold 

A C Maggst and R B Stinchcombe 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 
3NP, UK 

Received 11 October 1985 

Abstract. Dilution-induced criticality is discussed using exact and scaling descriptions. A 
simple exact argument is used to obtain the scaling form for the density of states in dilute 
chains. 

For higher-dimensional systems it is shown that the condition for the existence of a 
‘fracton’ edge is equivalent to the_ violation of a scaling relation between the fracton 
cmension of the infinite cluster, d and various static exponents. In addition the result 
dd/d, is obtained for the fracton dimensionality of the finite clusters near the percolation 
threshold; d, is the fractal dimension of the infinite cluster. 

In this letter we discuss dilution-induced criticality in random systems with a Goldstone 
symmetry. Recent years have seen the emergence of scaling descriptions of excitations 
near the percolation threshold (Korenbit and Shender 1978, Shender 1976, 1978) and 
in particular of geometrical viewpoints and recursive approaches to dynamics on 
fractals such as the percolating network (Kirkpatrick 1973, 1979, Stinchcombe 1983a, 
b, 1984, Domany et al 1983, Hams and Stinchcombe 1983). The associated crossover 
phenomena have received much attention lately. In particular it is known that the 
modes involved in the critical dynamics cross over from hydrodynamic spin waves at 
low frequency (Harris and Kirkpatrick 1977) to new excitations (‘fractons’) above a 
frequency such that the wavelength is approximately the (percolative) correlation 
length, 5. This implies that the density of states will be anomalous at the critical 
concentration p,( 6 = 00) and it has in fact been shown to diverge for ferromagnetic 
spin waves at the percolation threshold in two dimensions (Lewis and Stinchcombe 
1984, Lewis and O’Brien 1984). Such behaviour can be characterised by a new (fracton) 
dimension for the infinite cluster, in addition to the fractal dimension which relates 
to the scaling of its ‘mass’ (Mandelbrot 1977). The crossover can give rise to anomalous 
effects, such as those occumng in diffusion at pc (Alexander and Orbach 1982, Rammal 
and Toulouse 1982a, b, Pandey and Stauffer 1983, Pandey et al 1984). Another effect 
which has been suggested and could explain anomalies in the thermal conduction and 
specific heat of certain glasses is the existence of a sharp edge (the fracton edge) in 
the density of states at the crossover frequency (Rosenberg 1984, Orbach 1985, Derrida 
et a1 1984, Entin-Wohlman et al 1984). 

In this letter we consider a number of points related to the above picture. We give 
an exact scaling description of the density of states in one-dimensional diluted systems 
and then consider higher-dimensional systems where the existence of the fracton edge 
is discussed from the scaling viewpoint. Finally we point out that dyanamic experiments 
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performed on a percolating lattice (for instance, dilute magnetic alloys) would not 
measure the fracton dimension of the infinite cluster but instead a related exponent 
which is determined by the large but finite clusters which are present. This exponent 
is calculated. 

Though our conclusions readily generalise to phonon and diffusion problems, to 
be specific we consider low temperature spin waves in the bond diluted Heisenberg 
ferromagnet at concentration p in which the exchange couplings J are independently 
distributed random variables with the disiribution 

P ( J ) = ( l - p ) 6 ( J ) + p S ( J - l ) .  ( 1 )  
In one dimension the fact that any dilution breaks the system into independent 

chain segments has already been used (Odagaki and Lax 1980, Stinchcombe and Harris 
1983, Maggs and Stinchcombe 1984) to calculate the full dynamic response function, 
x, for the bond diluted chain as a function of wavevector k, frequency w and the static 
percolative correlation length 5. In the critical regime where k, w and [-'+ 0 but k5 
and wk-' remain finite, x exhibits dynamic scaling (Halperin and Hohenberg 1969) i.e. 

(2) 
From ,y we can find the related instantaneous or t = 0 correlation function, 2, by 

integration over w and the density of states by integration over k We see that 2 and 
p are homogeneous functions of their remaining variables. We shall now give a simple 
argument to show how this occurs for p ( w )  while at the same time obtaining the scaling 
function involved. 

We are interested in the critical regime where the static percolative correlation 
length 5= Iln pi-' diverges. This distance is a measure of the typical length of the 
segments into which a chain breaks up when randomly diluted. We shall need to know 
the distribution of chain lengths in the system and the low lying eigenfrequencies of 
the long chains which dominate p ( w )  for diverging 6. The probability distribution of 
segment lengths N in a dilute chain is P( N )  = p"( 1 - p )  and for a long segment with 
free boundary conditions the eigenfrequencies of the low energy modes are w = 

(m. r r / (N+  1)12 (where m is integral). We introduce the integrated density of states, 
G ( w ,  5) =j" p ( w ' )  dw' to count the total number of states in the system with energy 
less than or equal to w. For a chain segment to contribute to G ( w ,  e) ,  it must be of 
sufficient length for there to be at least one mode of frequency less than or equal to 
w ;  that is, the length of the segment must satisfy the inequality N 3 .rr/Jw - 1 = nl (w) .  
If we choose w so that n, is integral we find the total number of segments of at least 
this length to be p"'. In the same way we can find the number of segments with at 
least m modes contributing. Then the total number of states contributing to G ( w ,  5) 
is given by a geometric series over m which can be summed to give 

x( k, U, 6 )  = k2-"+'F( e, wk-').  

As [+ 00 with t 2 w  constant, G ( w ,  6 )  is defined for all finite values of the argument 
of equation (3). The density of states is now found by simple differentiation. It is 
easy to see that it will be of the form 

p ( w )  = w a K ( W 5 b )  (4) 
where a = -1  and b = 2. A similar result applies for the diluted diffusion problem (see 
Gefen et a1 1983) and the diluted phonon system where a = -1 ,  b = 1.  Similar simple 
arguments can be used to calculate other properties of dilute systems in one dimension. 



Letter to the Editor L65 

We now turn to the dynamics of dilute lattices in two or more dimensions and in 
particular to a consideration of the fracton edge. The argument will here be given 
again in terms of excitations in a magnetic system but the argument for phonons is 
only trivially different. 

For p > p c  and large 5 crossover arguments suggest that there are two distinct scaling 
regimes separated by a crossover frequency w, = D/ t2 which divides the low energy 
extended states and the higher energy localised states which for the vibrational case 
have been called fractons. It has been conjectured (Derrida et a1 1984, Entin-Wohlman 
et al 1984) that the density of states has a (‘fracton’) edge at U, and our aim now is 
to see whether this feature is required by scaling. In the above expression for w,, D 
is the spin wave stiffness in the dilute lattice which is well defined for p > pc.  For w + 0 
the standard mode counting arguments are valid so that p ( w )  = wd/’ - ’  /DdI2 .  For 
higher frequencies, up to the scaling limit w,  (some small [-independent fraction of 
the maximum frequency of the pure model), the following form applies, where the 
power defines the fracton dimension d‘ 

p ( w )  = 

If we match the densities of states at w ,  by assuming that no fracton edge occurs 
we are able to calculate B. But there is another way of calculating B which is to 
demand that the integral of p ( w )  is equal to the number of states on the infinite cluster, 
P (  p ) .  As p + p c  the ‘scaling’ (0 < w < U,) and ‘non-scaling’ ( w ,  < w )  contributions to 
this integral remain of comparable order of magnitude; however, the dominant scaling 
contribution comes from the range U, < w < U,, i.e. from the magnetic equivalent of 
the fractons which results in 5 p ( o )  d o  = O ( B ) .  Substituting the usual power law 
behaviour for D and 5 ( D  a ( p  -pC)‘ -@ and 6 a ( p  - p J Y )  leads to 

2 = 2 ( d ~  - p ) / (  t - p + 2 ~ ) .  ( 6 )  

This relationship between the exponents would have to be satisfied for the fracton 
edge not to occur. It turns out however that the relation is quite well obeyed, and 
indeed crossover arguments have been given (Alexander and Orbach 1982, Rammal 
and Toulouse 1982a, b) which yield equation (6). If the relationship is indeed satisfied 
the existence of the fracton edge is unnecessary. The same conclusion has also been 
reached by Aharony et a1 (1985). 

So far we have discussed the infinite cluster but at p = pc the fraction of sites in 
the infinite cluster is zero. The response and the density of states at low frequencies 
will be dominated by large but finite clusters. There is a simple relationship between 
the fracton dimensionality of the infinite cluster and that of the ensemble of large but 
finite clusters generated by the bond dilution. The argument is based on the premise 
that on length scales which are small compared to the size of a given finite cluster the 
properties of that cluster are identical to the infinite cluster. 

At p = p c  the distribution of the number of clusters, n,, containing s sites is given 
by a power law (Stauffer 1979, 1985, Essam 1980) 

Following our premise, on a cluster containing s sites the number of states with 
energy Suo will follow the same power law behaviour as on the infinite cluster, provided 
the energy is not too low for the influence of boundary conditions to be important. 
For any finite cluster, finite size effects will result in a low energy cut-off. 
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For the whole system the number of eigenfrequencies doo is given by the weighted 
sum over all cluster sizes of the same power law behaviour assumed for the infinite 
cluster multiplied by a cut-off function to take the finite size effects into account: 

with 

(9) d / 2  N,(wo)=soo . 
The minimum size of cluster included in the sum for any particular oo is given by 

the following argument: by the definition of the fractal dimension the number of sites 
in a cluster of linear dimensions L is s - L‘f. The lower cut-off frequency depends on 
the cluster size in the following way: 

- L-‘f e (10) 

where 6 is the anomalous diffusion exponent on the infinite cluster. Thus writing the 
cut-off size so in terms of wo and letting the sum (8) tend to an integral gives the 
following expression for the integrated density of states: 

Using the results 6 = d”/2d, (Alexander and Orbach 1982) and d / d f =  1 + 1/6 we find 
that the fracton dimensionality of the finite clusters is 

6= Jd/df (12) 

agreeing with Alexander (1983), Alexander et al (1983) and Aharony et al (1985). 
This relationship has important consequences for the critical dynamics of real 

systems as this is the exponent which would be measured in most experiments on 
dilute ferromagnets at the percolation threshold. However the difference between the 
infinite cluster and finite cluster effects would be small as d,/d is near to one for two- 
and three-dimensional lattices at pc.  
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